On Functions Analytic in a Half-Plane

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian integer points of analytic functions in a half - plane

A classical result of Pólya states that 2 is the slowest growing transcendental entire function taking integer values on the non-negative integers. Langley generalised this result to show that 2 is the slowest growing transcendental function in the closed right halfplane Ω = {z ∈ C : <(z) ≥ 0} taking integer values on the non-negative integers. Let E be a subset of the Gaussian integers in the ...

متن کامل

Integer points of analytic functions in a half-plane

It is shown that if f is an analytic function of sufficiently small exponential type in the right half-plane, which takes integer values on a subset of the positive integers having positive lower density, then f is a polynomial. MSC2000: 30D20, 30D35.

متن کامل

A special subspace of weighted spaces of holomorphic functions on the upper half plane

In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...

متن کامل

A remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane

In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.

متن کامل

Products of Differentiation and Composition from Weighted Bergman Spaces to Some Spaces of Analytic Functions on the Upper Half-Plane

Let Π = {z ∈ C : Imz > 0} be the upper half-plane in the complex plane. This paper characterizes the bounded products of differentiation operator and composition operator acting from the weighted Bergman space Aα(Π) to the weighted-type space A∞(Π) and the Bloch-type space B∞(Π). Mathematics Subject Classification: Primary 47B38; Secondary 47B33, 47B37

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1956

ISSN: 0002-9947

DOI: 10.2307/1992858